FJ RESTRAINT
FLEXIBLE EXPANSION JOINT

• ACCOMMODATES EXPANSION, CONTRACTION, ROTATION, BENDING AND SETTLEMENT

• UP TO 350 PSI WORKING PRESSURE

• MANUFACTURED IN THE U.S.A.

AVAILABLE OPTIONS:

• MECHANICAL JOINT & FLANGED STYLE ENDS

• DOUBLE-BALL & SINGLE-BALL JOINT ENDS
OVERVIEW

BOLTLESS DESIGN
The FJ Restraint requires no threaded fasteners for assembly. The advanced design eliminates the need for flanged assembly connections in the casing. The resulting one-piece casing construction is an essential element that achieves restraint capabilities of 8.4d tons of force for all sizes. By eliminating unnecessary components, the compact design allows a lightweight assembly for ease of installation.

1. Where “d” is in inches.

OFFSET
Each FJ Restraint ball end provides a bending angle of up to ±15° to ±20° (depending on size). This corresponds to a total bending angle of ±30° to ±40°. By varying the length of the sleeve, the FJ will also accommodate lateral offset of 4 to 20 inches. When special conditions demand, a FJ of 3 to 12 inches in size can accommodate an additional bending angle. Please contact Romac Industries, Inc. for assistance when your application requires special consideration.

EXPANSION
Since all of the FJ Restraint’s expansion occurs inside the ball joint, there is no need for expansion type sleeves. The centrifically cast ductile iron sleeve is one piece, which minimizes any turbidity.

TORSION
The design of the FJ Restraint will allow rotation or torsion of the pipeline components. This freedom of movement prevents damage to flanges, valves and other structures associated with the pipeline.

EASY TO INSTALL
Romac FJ Restraints arrive from the factory with tie-rods in place to prevent deflection and changes to the end-to-end dimension during transportation and installation. Tie-rods are then removed once installation is complete.

<table>
<thead>
<tr>
<th>NOM. SIZE</th>
<th>DEFLECTION ANGLE (degrees)</th>
<th>OFFSET (inches)</th>
<th>EXPANSION CONTRACTION (inches)</th>
<th>MAX. THRUST RESTRAINT LOAD (lbs.)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>20.0</td>
<td>4.0 - 20.0</td>
<td>4.00</td>
<td>50,400</td>
</tr>
<tr>
<td>4</td>
<td>19.0</td>
<td>4.0 - 20.0</td>
<td>4.00</td>
<td>67,200</td>
</tr>
<tr>
<td>6</td>
<td>18.0</td>
<td>4.0 - 20.0</td>
<td>6.25</td>
<td>100,800</td>
</tr>
<tr>
<td>8</td>
<td>17.0</td>
<td>4.0 - 20.0</td>
<td>6.25</td>
<td>134,400</td>
</tr>
<tr>
<td>10</td>
<td>16.0</td>
<td>4.0 - 20.0</td>
<td>6.25</td>
<td>168,000</td>
</tr>
<tr>
<td>12</td>
<td>15.0</td>
<td>4.0 - 20.0</td>
<td>7.88</td>
<td>201,600</td>
</tr>
<tr>
<td>14</td>
<td>15.0</td>
<td>4.0 - 20.0</td>
<td>7.88</td>
<td>235,200</td>
</tr>
<tr>
<td>16</td>
<td>15.0</td>
<td>4.0 - 20.0</td>
<td>9.44</td>
<td>268,800</td>
</tr>
<tr>
<td>18</td>
<td>15.0</td>
<td>4.0 - 20.0</td>
<td>9.44</td>
<td>302,400</td>
</tr>
<tr>
<td>20</td>
<td>15.0</td>
<td>4.0 - 20.0</td>
<td>11.81</td>
<td>336,000</td>
</tr>
<tr>
<td>24</td>
<td>15.0</td>
<td>4.0 - 20.0</td>
<td>11.81</td>
<td>401,200</td>
</tr>
</tbody>
</table>

*Maximum thrust equals 16,800d lbs., where “d” is nominal size. Larger sizes available upon request.

NSF61 certified upon request.
MATERIAL SPECIFICATIONS

CASTINGS
The casing, ball and sleeve are cast of ductile (nodular) iron, meeting or exceeding ASTM A536, Grade 65-45-12.

FLANGE ENDS
Compatible with ANSI Class 125 and 150 bolt circles.

MJ ENDS
Mechanical Joint ends meet the dimensional requirements of either ANSI/AWWA C111/A21.11 or ANSI/AWWA C153/A21.53 depending on size. Standard MJ gasket is used with this fitting. Transition gaskets may be used for iron pipe size pipe.

LOCK RING
Series 400 stainless steel. Limits expansion and contraction of Flexi-Joint up to maximum working pressure.

RING GASKETS
Ring gaskets are made of dual Ethylene Propylene Diene Methylene (EPDM) compounded for water and sewer service.

CASING COVER
3–12 inch covers are made of Ethylene Propylene Diene Methylene (EPDM). 14–24 inch covers are Protective Polyethylene debris cover.

COATINGS
The entire fitting is lined and coated with fusion bonded epoxy, applied and tested in accordance with AWWA C213.

PROTECTIVE SLEEVE
Polyethylene sleeve, 8 mils thick to cover entire FJ assembly after installation. Provided with flexible rubber bands to secure to pipe ends and FJ.

PRESSURE
When properly installed the FJ can be used at working pressures up to 350 psi.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Parts</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Casing</td>
<td>ASTM A536</td>
</tr>
<tr>
<td>2</td>
<td>Ball</td>
<td>ASTM A536</td>
</tr>
<tr>
<td>3</td>
<td>Sleeve</td>
<td>ASTM A536</td>
</tr>
<tr>
<td>4</td>
<td>Lock Ring</td>
<td>Type 410 SS</td>
</tr>
<tr>
<td>5</td>
<td>Ring Gasket, Casing</td>
<td>EPDM²</td>
</tr>
<tr>
<td>6</td>
<td>Ring Gasket, Ball</td>
<td>EPDM²</td>
</tr>
<tr>
<td>7</td>
<td>Casing Cover</td>
<td>EPDM²</td>
</tr>
</tbody>
</table>

FJ RESTRAINT DIMENSIONS

Dimension "L1" equals midpoint of expansion.
Larger sizes available upon request.

FJ Restraints are available in double-ball and single-ball joint configurations.
APPLICATION EXAMPLES

AQUEDUCTS

UNDER A RIVER CROSSING

BOUNDARY OF EARTH LAYER

LEADING INTO AND OUT OF A TANK

LEADING INTO AND OUT OF A VALVE BOX

ROAD CROSSING

SURROUNDING A STRUCTURE

PERFORMANCE TESTS

1. HORIZONTAL PRESSURE IN STRAIGHT AND OFFSET CONDITIONS

PURPOSE
To verify the integrity of the FJ Restraint in horizontal, straight and offset installations.

TEST METHOD
Install the FJ Restraint into test equipment at horizontal and straight positions. Pressurize the FJ Restraint, inspecting for water leaks or other abnormal indications.

2. CYCLE TESTING OF EXPANSION AND OFFSET

PURPOSE
To verify the integrity of the FJ Restraint during repeated cycles of expansion, contraction, and offset.

TEST METHOD
Install the FJ Restraint into the test equipment and repeat expansion, contraction, and offset for prescribed times while under water pressure.

3. RESTRAINING FORCE

PURPOSE
To verify the restraining force of the FJ Restraint.

TEST METHOD
Install the FJ Restraint into the test apparatus and apply a tensile load equivalent to 16,800d lbs.\(^1\) at the ends.

\(^1\)where “d” is in inches

4. WATER FLOW CHARACTERISTICS

PURPOSE
To examine the water flow inside the FJ Restraint.

TEST METHOD
Use a clear acrylic FJ Restraint of 3 inch size to observe the water flow by visual inspection. Confirm that no water stagnation occurs inside of the FJ Restraint at straight and deflected conditions.

5. EARTHQUAKE RESISTANCE

PURPOSE
Test earthquake resistance of the FJ Restraint in underground conditions.

TEST METHOD
Use equipment that approximately reproduces discontinuous earth, for example a boundary earth layer and connecting components between structures. Perform a shaking test to approximate the conditions of the Great Hanshin-Awaji Earthquake (that earthquake produced accelerations over 818 cm/s\(^2\)). Confirm that no significant strain nor leakage is observed.
INSTALLATION

STEP ONE
Remove the protective caps and packing material from the FJ Restraint. Remove straps attaching FJ Restraint to the shipping crate.

STEP TWO
Slide the polyethylene sleeve over one pipe end to which the FJ Restraint will be connected.

STEP THREE
Using a suitable hoist, lift the FJ Restraint horizontally from the crate into position. **NOTE:** Use lifting slings and shackles to connect to the lifting eyes on the FJ Restraint. **DO NOT** lift the FJ Restraint by the tie rods.

STEP FOUR
Connect the ends of the FJ Restraint to the pipe ends.

STEP FIVE
Remove the tie rods. **NOTE:** The tie rods are provided to prevent change to the end-to-end dimensions during transportation and installation. If the FJ Restraint is used with the tie rods in place, it will neither bend or stretch as the product was intended. If a pressure test is to be performed before the site is backfilled, the tie rods must remain in the FJ Restraint until the test is completed.

STEP SIX
Pull the polyethylene sleeve over the FJ Restraint so that it completely covers the FJ Restraint from one pipe end to the other.

STEP SEVEN
Fasten the polyethylene sleeve to the pipe and the FJ Restraint with the rubber bands. **NOTE:** Leave plenty of slack in the polyethylene sleeve to allow the FJ Restraint to bend and expand as intended.